

Resources for learning LAMMPS

Examples: about 35 sub-dirs under examples in distro

Manual: doc/Manual.html

Intro, Commands, Packages, Accelerating
Howto, Modifying, Errors

Alphabetized command list: one doc page per command

doc/Section commands.html#cmd 5

Web site: http://lammps.sandia.gov

Pictures, Movies - examples of others work
Papers - find a paper similar to what you want to model
Workshops - slides from LAMMPS simulation talks

Mail list: topics, search it, post to it

http://lammps.sandia.gov/mail.html

These tour slides (more info than I can present)

Structure of typical input scripts

1 Units and atom style
2 Create simulation box and atoms

region, create box, create atoms, region commands
lattice command vs box units

read data command
data file is a text file
look at examples/micelle/data.micelle
see read data doc page for full syntax

3 Define groups
4 Attributes of atoms: mass, velocity
5 Pair style for atom interactions
6 Fixes for time integration and constraints
7 Computes for diagnostics
8 Output: thermo, dump, restart
9 Run or minimize
10 Rinse and repeat (script executed one command at a time)

Obstacle example

input script = examples/obstacle/in.obstacle

Obstacle input script

1st section = setup box and create atoms

2d LJ obstacle flow

dimension 2
boundary p s p
atom style atomic
neighbor 0.3 bin
neigh modify delay 5

create geometry

lattice hex 0.7
region box block 0 40 0 10 -0.25 0.25
create box 3 box
create atoms 1 box

Obstacle input script

2nd section = define potential and groups of atoms

LJ potentials

pair style lj/cut 1.12246
pair coeff * * 1.0 1.0 1.12246

define groups

region 1 block INF INF INF 1.25 INF INF
group lower region 1
region 2 block INF INF 8.75 INF INF INF
group upper region 2
group boundary union lower upper
group flow subtract all boundary

set group lower type 2
set group upper type 3

Obstacle input script

3rd section = set velocities and fixes

initial velocities

mass * 1.0
compute mobile flow temp
velocity flow create 1.0 482748 temp mobile
fix 1 all nve
fix 2 flow temp/rescale 200 1.0 1.0 0.02 1.0
fix modify 2 temp mobile

Poiseuille flow

velocity boundary set 0.0 0.0 0.0
fix 3 lower setforce 0.0 0.0 0.0
fix 4 upper setforce 0.0 NULL 0.0
fix 5 upper aveforce 0.0 -0.5 0.0
fix 6 flow addforce 1.0 0.0 0.0

Obstacle input script

4th section = create 2 obstacles to flow

2 obstacles

region void1 sphere 10 4 0 3
delete atoms region void1
region void2 sphere 20 7 0 3
delete atoms region void2

fix 7 flow indent 100 sphere 10 4 0 4
fix 8 flow indent 100 sphere 20 7 0 4
fix 9 all enforce2d

Obstacle input script

5th section: define output and run simulation

run

timestep 0.003
thermo 1000
thermo modify temp mobile

#dump 1 all atom 100 dump.obstacle
dump 1 all image 500 image.*.jpg type type &
zoom 1.6 adiam 1.5
dump modify 1 pad 5

run 25000

Debugging an input script

LAMMPS tries hard to flag all kinds of errors and warnings

1 If an input command generates the error ...
% lmp linux -echo screen < in.polymer
re-read the doc page for the command

2 For input, setup, run-time errors ...
search doc/Section errors.html for text of error message
for warnings too, they are usually important
if specific input command causes problems,
look for IMPORTANT NOTE info on doc page
Look in the source code file at the line number

3 Search the mail list, others may have similar problem
4 Remember: an input script is like a program

start with small systems
start with one processor
turn-on complexity one command at a time
moniter thermo output, viz the results, dump image is instant

Obstacle example

Questions on input scripts?

Exercise:

edit examples/obstacle/in.obstacle

add 3rd void region and 3rd fix indent

run and examine output, make movie

region void3 sphere 30 3 0 1
delete atoms region void3
fix 8a flow indent 100 sphere 30 3 0 2

Make a movie

50 JPG files

image.16500.jpg

ImageMagick display

Mac Preview

Make/view a movie

ImageMagick
convert *.jpg image.gif

open in browser
open -a Safari image.gif

Mac QuickTime
open image sequence

Windows Media Player

VMD, AtomEye, ...

Examine screen output

LAMMPS (15 Aug 2013)
Lattice spacing in x,y,z = 1.28436 2.22457 1.28436
Created orthogonal box = (0 0 -0.321089)

to (51.3743 22.2457 0.321089)
4 by 1 by 1 MPI processor grid

Created 840 atoms
120 atoms in group lower
120 atoms in group upper
240 atoms in group boundary
600 atoms in group flow
Setting atom values ...
120 settings made for type

Setting atom values ...
120 settings made for type

Deleted 36 atoms, new total = 804
Deleted 35 atoms, new total = 769

More screen output

WARNING: Temperature for thermo pressure is not
for group all (../thermo.cpp:436)

Setting up run ...
Memory usage per processor = 2.23494 Mbytes
Step Temp E pair E mol TotEng Press Volume
0 1.0004177 0 0 0.68689281 0.46210058 1143.0857
1000 1 -0.32494012 0 0.36166587 1.2240503 1282.5239
2000 1 -0.37815616 0 0.30844982 1.0642877 1312.5691
...
...
...
25000 1 -0.36649381 0 0.32011217 0.98366691 1451.5444
25000 1 -0.38890426 0 0.29770172 0.95284427 1455.9361
Loop time of 1.76555 on 4 procs for

25000 steps with 769 atoms

Timing info

Loop time of 1.76555 on 4 procs for
25000 steps with 769 atoms

Pair time (%) = 0.14617 (8.27903)
Neigh time (%) = 0.0467809 (2.64966)
Comm time (%) = 0.307951 (17.4422)
Outpt time (%) = 0.674575 (38.2078)
Other time (%) = 0.590069 (33.4213)

Run statistics

Per-processor values at end of run

Nlocal: 192.25 ave 242 max 159 min
Histogram: 2 0 0 0 0 1 0 0 0 1
Nghost: 43 ave 45 max 39 min
Histogram: 1 0 0 0 0 0 0 0 2 1
Neighs: 414 ave 588 max 284 min
Histogram: 2 0 0 0 0 0 1 0 0 1

Total # of neighbors = 1656
Ave neighs/atom = 2.15345
Neighbor list builds = 1641
Dangerous builds = 1

Questions on output? Can everyone make a movie?

Defining variables in input scripts

Styles: index, loop, equal, atom, ...

variable x index run1 run2 run3 run4
variable x loop 100
variable x trap(f JJ[3])*${scale}
variable x atom -(c p[1]+c p[2]+c p[3])/(3*vol)

Formulas can be complex

see doc/variable.html
thermo keywords (temp, press, ...)
math operators & functions (sqrt, log, cos, ...)
group and region functions (count, xcm, fcm, ...)
various special functions (min, ave, trap, stride, stagger, ...)
per-atom vectors (x, vx, fx, ...)
output from computes, fixes, other variables

Formulas can be time- and/or spatially-dependent

Using variables in input scripts

Substitute in any command via $x or ${myVar}
Can define them as command-line arguments

% lmp linux -v myTemp 350.0 < in.polymer

Loop using next and jump commands

next command increments a variable
jump command goes to same or different input script

Many commands allow them as arguments

fix addforce 0.0 v fy 1.0
dump modify every v count
region sphere 0.0 0.0 0.0 v radius

Power tools for input scripts

Filename options:

dump.*.% for per-snapshot or per-processor output
read data data.protein.gz
read restart old.restart.*

If/then/else via if command

Insert another script via include command

useful for long list of parameters

Looping via next and jump commands

Invoke a shell command or external program

shell cd subdir1
shell my analyze out.file $n ${param}

Various ways to run multiple simulations from one script

see doc/Section howto 6.4

Example script for multiple runs

variable r equal random(1,1000000000,58798)
variable a loop 8
variable t index 0.8 0.85 0.9 0.95 1.0 1.05 1.1 1.15
log log.$a
read data.polymer
velocity all create $t $r
fix 1 all nvt $t $t 1.0
dump 1 all atom 1000 dump.$a.*
run 100000
next t
next a
jump in.polymer

Run 8 simulations on 3 partitions until finished:

change a & t to universe-style variables
% mpirun -np 12 lmp linux -p 3x4 -in in.polymer

Pre-processing tools to build complex systems

LAMMPS does not build molecular systems or auto-magically
assign force field parameters for you (Sun PM: Building Complex
Molecular Systems)

Data file must include list of bonds, angles, etc

Data file can include force field assignments
Tools directory has converters for both steps

ch2lmp = CHARMM converter
amber2lmp = AMBER converter
msi2lmp = Accelrys converter

Provided builders
Moltemplate (Andrew Jewett)
Pizza.py = chain and patch tools (Python)

3rd party builders that can create LAMMPS input
see http://lammps.sandia.gov/prepost.html
VMD TopoTools (Axel Kohlmeyer)
Avogadro
Packmol

Pair styles

LAMMPS lingo for interaction potentials

A pair style can be true pair-wise or many-body

LJ, Coulombic, Buckingham, Morse, Yukawa, ...
EAM, Tersoff, REBO, ReaxFF, ...

Bond/angle/dihedral/improper styles = permanent bonds

Variants optimized for GPU and many-core

GPU, USER-CUDA, USER-OMP packages
lj/cut, lj/cut/gpu, lj/cut/cuda, lj/cut/omp
see doc/Section accelerate.html

Coulomb interactions included in pair style

lj/cut, lj/cut/coul/cut, lj/cut/coul/wolf, lj/cut/coul/long
done to optimize inner loop

Categories of pair styles

Solids
eam, eim, meam, adp

Bio and polymers
charmm, class2, gromacs, dreiding

Reactive
tersoff, bop, airebo, comb, reax, reax/c

Coarse-grained
dpd, granular, sph, peri, colloid, lubricate, brownian, FLD

Aspherical
gayberne, resquared, line, tri

Pair table for tabulation of any pair-wise interaction
Pair hybrid style allows for hybrid models

polymers on metal
CNTs in water
solid-solid interface between 2 materials

Pair styles

See doc/Section commands.html for full list

Pair styles

And they come in accelerated flavors: omp, gpu, cuda

Pair styles

See doc/pair.html for one-line descriptions

Relative CPU cost of potentials

See http://lammps.sandia.gov/bench.html#potentials for details
Can estimate how long your simulation will run

Bond styles (also angle, dihedral, improper)

Used for molecules with fixed bonds

Fix bond/break and bond style quartic can break them

To learn what bond styles LAMMPS has ...
where would you look?

doc/Section commands.html or doc/bond style.html

Long-range Coulombics

KSpace style in LAMMPS lingo, see doc/kspace style.html

Options:

traditional Ewald, scales as O(N3/2)
PPPM (like PME), scales as O(N log(N))
MSM, scales as O(N), lj/cut/coul/msm

Additional options:

non-periodic, PPPM (z) vs MSM (xyz)
long-range dispersion (LJ)

PPPM is fastest choice for most systems

FFTs can scale poorly for large processor counts

MSM can be faster for low-accuracy or large proc counts
Ways to speed-up long-range calculations:

see doc/Section accelerate.html
cutoff & accuracy settings adjust Real vs KSpace work
kspace style pppm/stagger for PPPM
kspace modify diff ad for smoothed PPPM
run style verlet/split

Fixes

Most flexible feature in LAMMPS
Allow control of “what” happens “when” within each timestep

Loop over timesteps:
fix initial NVE, NVT, NPT, rigid-body integration
communicate ghost atoms
fix neighbor insert particles
build neighbor list (once in a while)
compute forces
communicate ghost forces
fix force SHAKE, langevin drag, wall, spring, gravity
fix final NVE, NVT, NPT, rigid-body integration
fix end volume & T rescaling, diagnostics
output to screen and files

Fixes

100+ fixes in LAMMPS
You choose what group of atoms to apply fix to
Already saw some in obstacle example:

fix 1 all nve
fix 2 flow temp/rescale 200 1.0 1.0 0.02 1.0
fix 3 lower setforce 0.0 0.0 0.0
fix 5 upper aveforce 0.0 -0.5 0.0
fix 6 flow addforce 1.0 0.0 0.0

To learn what fix styles LAMMPS has ...
where would you look?
doc/Section commands.html or doc/fix.html
If you familiarize yourself with fixes,
you’ll know many things LAMMPS can do
Many fixes store output accessible by other commands

rigid body COM
thermostat energy
forces before modified

Computes

∼75 computes in LAMMPS

Calculate some property of system, in parallel

Always for the current timestep

To learn what compute styles LAMMPS has ...
doc/Section commands.html or doc/compute.html

Computes

Key point:

computes store their answers
other commands invoke them and use the results
e.g. thermo output, dumps, fixes

Output of computes: (discussion in manual section 6.15)

global vs per-atom vs local
scalar vs vector vs array
extensive vs intensive values

Examples:

temp & pressure = global scalar or vector
pe/atom = potential energy per atom (vector)
displace/atom = displacement per atom (array)
pair/local & bond/local = per-neighbor or per-bond info

Many computes are useful with averaging fixes:

fix ave/time, ave/spatial, ave/atom
fix ave/histo, ave/correlate

Thermo output

One line of output every N timesteps to screen and log file

See doc/thermo style.html

Any scalar can be output:

dozens of keywords: temp, pyy, eangle, lz, cpu
any output of a compute or fix: c ID, f ID[N], c ID[N][M]

fix ave/time stores time-averaged quantities

equal-style variable: v MyVar
one value from atom-style variable: v xx[N]
any property for one atom: q, fx, quat, etc

Post-process via:

tools/python/logplot.py log.lammps X Y (via GnuPlot)
tools/python/log2txt.py log.lammps data.txt X Y ...
Pizza.py log tool
tools/xmgrace/README and one-liners and auto-plotter
can read thermo output across multiple runs

Dump output

Snapshot of per-atom values every N timesteps

See doc/dump.html

Styles
atom, custom (both native LAMMPS)

VMD will auto-read if file named *.lammpstraj

xyz for coords only
cfg for AtomEye
DCD, XTC for CHARMM, NAMD, GROMACS

good for back-and-forth runs and analysis

Two additional styles

local: per-neighbor, per-bond, etc info
image: instant JPG/PPM picture, rendered in parallel

Dump output

Any per-atom quantity can be output

dozens of keywords: id, type, x, xs, xu, mux, omegax, ...
any output of a compute or fix: f ID, c ID[M]
atom-style variable: v foo

Additional options:

control which atoms by group or region
control which atoms by threshold

dump modify thresh c pe > 3.0

text or binary or gzipped
one big file or per snapshot or per proc
see dump modify fileper or nfile

Post-run conversion

tools/python/dump2cfg.py, dump2pdb.py, dump2xyz.py
Pizza.py dump, cfg, ensight, pdb, svg, vtk, xyz tools

Parallelization in LAMMPS

Physical domain divided into 3d bricks

One brick per processor

Atoms carry properties &
topology as they migrate

Comm of ghost atoms within cutoff

6-way local stencil

Short-range forces ⇒
CPU cost scales as O(N/P)

Parallel performance

See http://lammps.sandia.gov/bench.html

Exercise:

run bench/in.lj, change N and P, is it O(N/P) ?

% lmp linux -v x 2 -v y 2 -v z 2 < in.lj

% mpirun -np 2 lmp linux < in.lj

How to speed-up your simulations

See doc/Section accelerate.html of manual
1 Many ideas for long-range Coulombics

PPPM with 2 vs 4 FFTs
PPPM with staggered grid
run style verlet/split
processor layout

2 Howto for GPU and USER-CUDA and USER-OMP packages
GPU:

pair style and neighbor list build on GPU
can use multiple cores per GPU

USER-CUDA:
fixes and computes onto GPU (many timesteps)
one core per GPU

USER-OMP:
works via OpenMP, run 1 or 2 MPI tasks/node
supports large number of pair styles (+ other styles)

GPU benchmark data at
http://lammps.sandia.gov/bench.html

desktop and Titan (ORNL)

How to speed-up your simulations

Increase time scale via timestep size

fix shake for rigid bonds (2 fs)
run style respa for hierarchical steps (4 fs)

Increase length scale via coarse graining

all-atom vs united-atom vs bead-spring
also increases time scale
mesoscale models:

ASPHERE, BODY, COLLOID, FLD packages
GRANULAR, PERI, RIGID, SRD packages
see doc/Section packages.html for details

Sat PM: Coarse-grain Applications with LAMMPS

Quick tour of more advanced topics

See http://lammps.sandia.gov/features.html

Units

see doc/units.html
LJ, real, metal, cgs, si
all input/output in one unit system

Ensembles

see doc/Section howto.html 6.16
one or more thermostats (by group)
single barostat
rigid body dynamics

Hybrid models

pair style hybrid and hybrid/overlay
atom style hybrid sphere bond ...

Quick tour of more advanced topics

Aspherical particles

see doc/Section howto.html 6.14
ellipsoidal, lines, triangles, rigid bodies
ASPHERE package

Mesoscale and continuum models

COLLOID, FLD, SRD packages for NPs and colloids
PERI package for Peridynamics
USER-ATC package for atom-to-continuum (FE)
GRANULAR package for granular media
add-on LIGGGHTS package for DEM

www.liggghts.com and www.cfdem.com

Quick tour of more advanced topics

Multi-replica modeling

see doc/Section howto.html 6.14
parallel tempering
PRD, TAD, NEB

Load balancing

balance command for static LB
fix balance command for dynamic LB
work by adjusting proc dividers in 3d brick grid

Quick tour of more advanced topics

Energy minimization
Via usual dynamics to un-overlap particles

pair style soft
fix nve/limit and fix viscous

Via gradient-based minimization

min style cg, htfn, sd

Via damped-dynamics minimization

min style quickmin and fire
used for nudged-elastic band (NEB)

Quick tour of more advanced topics

Use LAMMPS as a library

doc/Section howto.html
6.10 and 6.19

C-style interface
(C, C++, Fortran,
Python)

examples/COUPLE dir

python and
python/examples
directories

What have people done with LAMMPS?

Pictures: http://lammps.sandia.gov/pictures.html
Movies: http://lammps.sandia.gov/movies.html

Papers: http://lammps.sandia.gov/papers.html
authors, titles, abstracts for ∼2500 papers

Customizing and modifying LAMMPS

LAMMPS is designed to be easy to extend

90% of LAMMPS is customized add-on classes, via styles

Write a new derived class, drop into src, re-compile

Resources:

doc/Section modify.html
doc/PDF/Developer.pdf

class hierarchy & timestep structure

Sun PM: Modifying LAMMPS and New Developments

Please contribute your code to the LAMMPS distro !

